
CS6601 – DISTRIBUTED SYSTEMS

 Page 1

UNIT - III PEER TO PEER SERVICES AND FILE SYSTEM
Peer-to-peer Systems – Introduction - Napster and its legacy - Peer-to-peer – Middleware - Routing

overlays. Overlay case studies: Pastry, Tapestry- Distributed File Systems –Introduction - File service

architecture – Andrew File system. File System: Features-File model -File accessing models - File sharing
semantics Naming: Identifiers, Addresses, Name Resolution – Name Space Implementation – Name

Caches – LDAP.

PART - A

1. What is the use of middleware?

 Middleware is a layer of software whose purpose is to mask heterogeneity and to provide a

 convenient programming model to application programmers. Middleware is represented by

 processes or objects in a set of computers that interact with each other to implement

 communication and resource sharing support for distributed applications.

2. Write about the parts available in routing algorithm?

 Routing algorithm must make decisions that determine the route taken by each packet as it

travels through the network. In circuit-switched network layers such as X.25 and frame

relay networks such as ATM the route is determined whenever a virtual circuit or

connection is established.

 In packet-switched network layers such as IP it is determined separately for each packet,

and the algorithm must be particularly simple and efficient if it is not to degrade network

performance.

 It must dynamically update its knowledge of the network based on traffic monitoring and

the detection of configuration changes or failures. This activity is less time-critical; slower and

more computation-intensive techniques can be used.

3. Define multicast communication?

 It is the implementation of group communication. Multicast communication requires

coordination and agreement. The aim is for members of a group to receive copies of messages sent to

the group. Many different delivery guarantees are possible

 Example: agreement on the set of messages received or on delivery ordering.

4. What are the Application dependencies of Napster?

 Napster took advantage of the special characteristics of the application for which it was

designed in other ways:

 Music files are never updated, all the replicas of files need to remain consistent after

updates.

 No guarantees are required concerning the availability of individual files – if a music file is

 temporarily unavailable, it can be downloaded later. This reduces the requirement for

 dependability of individual computers and their connections to the Internet.

5. Define Routing overlay.

 In peer-to-peer systems a distributed algorithm known as a routing overlay takes

responsibility for locating nodes and objects. The name denotes the fact that the middleware takes the

form of a layer that is responsible for routing requests from any client to a host that holds the object to

which the request is addressed.

6. What is a file group?

 A collection of files that can be located on any server or moved between servers while

maintaining the same names is a file group. Similar to a UNIX file system helps with distributing the

load of file serving between several servers. File groups have identifiers which are unique throughout

the system used to refer file groups and files

7. What is flat file service interface?

 It is RPC interface used by client modules. It is not normally used directly by user level

programs. A field is invalid if the file that it refers to is not present in the server processing the

request or if its access permissions are inappropriate for the operation requested.

CS6601 – DISTRIBUTED SYSTEMS

 Page 2

8. Write a note on Andrew file system?

 AFS provides transparent access to remote shared files for unix programs running on

 workstations. Access to AFS files is via the normal unix file primitives, enabling existing unix

 programs to access AFS files without modification or recompilation.

9. Write a note on X.500 directory service?

 It is a directory service. It can be in the same way as a conventional name service but it is

 primarily used to satisfy descriptive queries, designed to discover the names and attributes of other

 users or system resources.

10. What is the use of iterative navigation?

 DNS supports the model known as iterative navigation. To resolve a name, a client presents the

 name to the local name server, which attempts to resolve it. If the local name server has the name,

 it returns the result immediately.

11. Define multicast navigation?

 A client multicast the name to be resolved and the required object type to the group of name

 servers. Only the server that holds the named attributes responds to the request.

12. What are the major goals of Sun NFS?

 NFS should be deployable easily.

 NFS should be efficient enough to be tolerable to users.

 Sun NFS should work with existing applications.

 To achieve a high level of support for hardware and operating system heterogeneity.

13. What is Name Service and Namespace? Or What is naming and locating facility. (Nov/Dec

 2017)

 A name service stores information about a collection of textual names, in the form of bindings

 between the names and the attributes of the entities they denote, such as users, computers, services

 and objects. The collection is often subdivided into one or more naming contexts: individual

 subsets of the bindings that are managed as a unit. The major operation that a name service

 supports is to resolve a name that is, to look up attributes from a given name.

 A name space is the collection of all valid names recognized by a particular service. The service

 will attempt to look up a valid name, even though that name may prove not to correspond to any

 object that is to be unbound. Name spaces require a syntactic definition to separate valid names

 from invalid names. For example, ‘...’ is not acceptable as the DNS name of a computer, whereas

 www.cdk.net is valid.

14. Give the advantages in using name caches in file systems. (Nov/Dec 2016)

 Caching is key to a name service’s performance and assists in maintaining the availability of both

 the name service and other services in spite of name server crashes. Its role in enhancing response

 times by saving communication with name servers is clear. Caching can be used to eliminate

 high-level name servers – the root server in particular.

15. Define DNS with examples

 The Domain Name System is a name service design whose main naming database is used across

 the Internet. The objects named by the DNS are primarily computers – for which mainly IP

 addresses are stored as attributes.

 The original top-level organizational domains called as generic domains in use across the Internet

 were:

 com – Commercial organizations

 edu – Universities and other educational institutions

 gov – US governmental agencies

 mil – US military organizations

 net – Major network support centres

 org – Organizations not mentioned above

 int – International organizations

CS6601 – DISTRIBUTED SYSTEMS

 Page 3

16. Write short notes on Directory Services.

 A service that stores collections of bindings between names and attributes and that looks up entries

 that match attribute-based specifications is called a directory service. Examples are Microsoft’s

 Active Directory Services, X.500 etc. Directory services are sometimes called yellow pages

 services, and conventional name services are correspondingly called white pages services, in an

 analogy with the traditional types of telephone directory. Directory services are also sometimes

 known as attribute-based name services.

17. Discuss on LDAP. (May/June 2016)

 The Lightweight Directory Access Protocol (LDAP) is a directory service protocol that runs on a

 layer above the TCP/IP stack. It provides a mechanism used to connect to, search, and modify

 Internet directories. The LDAP directory service is based on a client-server model. It is an open,

 vendor-neutral, industry standard application protocol.

18. What are the non-functional requirements that peer-to-peer middleware must address?

 Global scalability: One of the aims of peer-to-peer applications is to exploit the hardware

 resources of very large numbers of hosts connected to the Internet

 Load balancing: The performance of any system designed to exploit a large number of computers

 depends upon the balanced distribution of workload across them.

 Optimization for local interactions between neighboring peers. The middleware should aim to

 place resources close to the nodes that access them the most.

 Accommodating to highly dynamic host availability: Most peer-to-peer systems are constructed

 from host computers that are free to join or leave the system at any time.

19. What is the key problem faced in peer-to-peer middleware.

 A key problem in the design of peer-to-peer applications is providing a mechanism to enable

 clients to access data resources quickly and dependably wherever they are located throughout the

 network. Napster maintained a unified index of available files for this purpose, giving the network

 addresses of their hosts.

20. Describe the characteristics of peer-to-peer systems. (May/June 2016) (Nov/Dec 2017)

 Its design ensures that each user contributes resources to the system.

 Although they may differ in the resources that they contribute, all the nodes in a peer-to-peer

 system have the same functional capabilities and responsibilities.

 Its correct operation does not depend on the existence of any centrally administered systems.

 A key issue for their efficient operation is the choice of an algorithm for the placement of data

 across many hosts and subsequent access to it in a manner that balances the workload and ensures

 availability without adding undue overheads.

21.What is the use of GUID?

 A Globally Unique Identifier (GUID) is a unique reference number used as an identifier

 in computer software. The term GUID typically refers to various implementations of

 the universally unique identifier (UUID) standard. A GUID can be stored as a 16-byte (128-bit)

 number. GUIDs are commonly used as the primary key of database tables.

22.List the file accessing models. (Nov/Dec 2016)

 a. Remote service model: Processing of a client’s request is performed at the server’s node. Thus,

 the client’s request for file access is delivered across the network as a message to the server, the

 server machine performs the access request, and the result is sent to the client. Need to minimize

 the number of messages sent and the overhead per message.

 b. Data-caching model: This model attempts to reduce the network traffic of the previous model

 by caching the data obtained from the server node. This takes advantage of the locality feature of

 the found in file accesses. A replacement policy such as LRU is used to keep the cache size

 bounded.

23. How will you make use of Namespace and DNS. (Apr/May 2017)
 A name space is the collection of all valid names recognized by a particular service. The DNS name space
 has a hierarchic structure: a domain name consists of one or more strings called name components or

https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Byte

CS6601 – DISTRIBUTED SYSTEMS

 Page 4

 labels, separated by the delimiter ‘.’. DNS names are not case-sensitive, so www.cdk5.net and

 WWW.CDK5.NET have the same meaning.

24. What are the main tasks of routing overlay? (Apr/May 2017)
 In peer-to-peer systems a distributed algorithm known as a routing overlay takes responsibility for locating
 nodes and objects. The name denotes the fact that the middleware takes the form of a layer that is

 responsible for routing requests from any client to a host that holds the object to which the request is

 addressed. The routing overlay ensures that any node can access any object by routing each request through

 a sequence of nodes, exploiting knowledge at each of them to locate the destination object.

PART - B

1. Explain in detail about naming in file systems. (Nov/Dec 2016)
A name service stores information about a collection of textual names, in the form of bindings between the

names and the attributes of the entities they denote, such as users, computers, services and objects. The

collection is often subdivided into one or more naming contexts: individual subsets of the bindings that are
managed as a unit. The major operation that a name service supports is to resolve a name – that is, to look up

attributes from a given name.

Name spaces

A name space is the collection of all valid names recognized by a particular service. The

service will attempt to look up a valid name, even though that name may prove not to

correspond to any object – i.e., to be unbound. Name spaces require a syntactic definition

to separate valid names from invalid names. For example, ‘...’ is not acceptable as the DNS

name of a computer, whereas www.cdk99.net is valid (even though it is unbound).

Names may have an internal structure that represents their position in a hierarchic name

space such as pathnames in a file system, or in an organizational hierarchy such as Internet

domain names; or they may be chosen from a flat set of numeric or symbolic identifiers.

One important advantage of a hierarchy is that it makes large name spaces more

manageable. Each part of a hierarchic name is resolved relative to a separate context of

relatively small size, and the same name may be used with different meanings in different

contexts, to suit different situations of use. In the case of file systems, each directory

represents a context. Thus /etc/passwd is a hierarchic name with two components. The

first, ‘etc’, is resolved relative to the context ‘/’, or root, and the second part, ‘passwd’, is

relative to the context ‘/etc’. The name /oldetc/passwd can have a different meaning

because its second component is resolved in a different context. Similarly, the same name

/etc/passwd may resolve to different files in the contexts of two different computers.

The DNS name space has a hierarchic structure: a domain name consists of one or more

strings called name components or labels, separated by the delimiter ‘.’. There is no

delimiter at the beginning or end of a domain name, although the root of the DNS name

space is sometimes referred to as ‘.’ for administrative purposes. The name components are

non-null printable strings that do not contain ‘.’. In general, a prefix of a name is an initial

section of the name that contains only zero or more entire components. For example, in

DNS www and www.cdk5 are both prefixes of www.cdk5.net. DNS names are not case-

sensitive, so www.cdk5.net and WWW.CDK5.NET have the same meaning.

Aliases • An alias is a name defined to denote the same information as another name,

similar to a symbolic link between file path names. Aliases allow more convenient names

to be substituted for relatively complicated ones, and allow alternative names to be used by

different people for the same entity. An example is the common use of URL shorteners,

often used in Twitter posts and other situations where space is at a premium. For example,

using web redirection, http://bit.ly/ctqjvH refers to

http://cdk5.net/additional/rmi/programCode/ShapeListClient.java. As another example, the

DNS allows aliases in which one domain name is defined to stand for another. Aliases are

CS6601 – DISTRIBUTED SYSTEMS

 Page 5

often used to specify the names of machines that run a web server or an FTP server. For

example, the name www.cdk5.net is an alias for cdk5.net. This has the advantage that

clients can use either name for the web server, and if the web server is moved to another

computer, only the entry for cdk5.net needs to be updated in the DNS database.

Naming domains • A naming domain is a name space for which there exists a single

overall administrative authority responsible for assigning names within it. This authority is

in overall control of which names may be bound within the domain, but it is free to

delegate this task.

Name resolution

For the common case of hierarchic name spaces, name resolution is an iterative or

recursive process whereby a name is repeatedly presented to naming contexts in order to

look up the attributes to which it refers. A naming context either maps a given name onto a

set of primitive attributes (such as those of a user) directly, or maps it onto a further

naming context and a derived name to be presented to that context. To resolve a name, it is

first presented to some initial naming context; resolution iterates as long as further contexts

and derived names are output.

Name servers and navigation • Any name service, such as DNS, that stores a very large

database and is used by a large population will not store all of its naming information on a

single server computer. Such a server would be a bottleneck and a critical point of failure.

Any heavily used name services should use replication to achieve high availability. We

shall see that DNS specifies that each subset of its database is replicated in at least two

failure-independent servers.

One navigation model that DNS supports is known as iterative navigation (see Figure

below). To resolve a name, a client presents the name to the local name server, which

attempts to resolve it. If the local name server has the name, it returns the result

immediately. If it does not, it will suggest another server that will be able to help.

Resolution proceeds at the new server, with further navigation as necessary until the name

is located or is discovered to be unbound.

In multicast navigation, a client multicasts the name to be resolved and the required object

type to the group of name servers. Only the server that holds the named attributes responds

to the request.

Another alternative to the iterative navigation model is one in which a name server

coordinates the resolution of the name and passes the result back to the user agent. Ma

[1992] distinguishes non-recursive and recursive server-controlled navigation (Figure

13.3). Under non-recursive server-controlled navigation, any name server may be chosen

by the client. This server communicates by multicast or iteratively with its peers in the

style described above, as though it were a client. Under recursive server-controlled

CS6601 – DISTRIBUTED SYSTEMS

 Page 6

navigation, the client once more contacts a single server. If this server does not store the

name, the server contacts a peer storing a (larger) prefix of the name, which in turn

attempts to resolve it. This procedure continues recursively until the name is resolved.

2. Elucidate about File service architecture with neat diagram. (May/June 2016)
An architecture that offers a clear separation of the main concerns in providing access to files is

obtained by structuring the file service as three components – a flat file service, a directory service and a client

module. The relevant modules and their relationships are shown in Figure below.

The division of responsibilities between the modules can be defined as follows:

Flat file service • The flat file service is concerned with implementing operations on the

contents of files. Unique file identifiers (UFIDs) are used to refer to files in all requests for

flat file service operations. The division of responsibilities between the file service and the

directory service is based upon the use of UFIDs. UFIDs are long sequences of bits chosen

so that each file has a UFID that is unique among all of the files in a distributed system.

When the flat file service receives a request to create a file, it generates a new UFID for it

and returns the UFID to the requester.

Directory service • The directory service provides a mapping between text names for files

and their UFIDs. Clients may obtain the UFID of a file by quoting its text name to the

directory service. The directory service provides the functions needed to generate

directories, to add new file names to directories and to obtain UFIDs from directories. It is

a client of the flat file service; its directory files are stored in files of the flat file service.

When a hierarchic file-naming scheme is adopted, as in UNIX, directories hold references

CS6601 – DISTRIBUTED SYSTEMS

 Page 7

to other directories.

Client module • A client module runs in each client computer, integrating and extending

the operations of the flat file service and the directory service under a single application

programming interface that is available to user-level programs in client computers. For

example, in UNIX hosts, a client module would be provided that emulates the full set of

UNIX file operations, interpreting UNIX multi-part file names by iterative requests to the

directory service. The client module also holds information about the network locations of

the flat file server and directory server processes. Finally, the client module can play an

important role in achieving satisfactory performance through the implementation of a

cache of recently used file blocks at the client.

Flat file service interface • Figure below contains a definition of the interface to a flat file

service. This is the RPC interface used by client modules. It is not normally used directly

by user-level programs. A FileId is invalid if the file that it refers to is not present in the

server processing the request or if its access permissions are inappropriate for the operation

requested. All of the procedures in the interface except Create throw exceptions if the

FileId argument contains an invalid UFID or the user doesn’t have sufficient access rights.

These exceptions are omitted from the definition for clarity.

The most important operations are those for reading and writing. Both the Read and the

Write operation require a parameter i specifying a position in the file. The Read operation

copies the sequence of n data items beginning at item i from the specified file into Data,

which is then returned to the client. The Write operation copies the sequence of data items

in Data into the specified file beginning at item i, replacing the previous contents of the

file at the corresponding position and extending the file if necessary.

Create creates a new, empty file and returns the UFID that is generated. Delete removes the

specified file.

GetAttributes and SetAttributes enable clients to access the attribute record. GetAttributes is

normally available to any client that is allowed to read the file. Access to the SetAttributes

operation would normally be restricted to the directory service that provides access to the file.

The values of the length and timestamp portions of the attribute record are not affected by

SetAttributes; they are maintained separately by the flat file service itself.

Directory service interface • Figure below contains a definition of the RPC interface to a

directory service. The primary purpose of the directory service is to provide a service for

translating text names to UFIDs. In order to do so, it maintains directory files containing the

mappings between text names for files and UFIDs. Each directory is stored as a conventional

file with a UFID, so the directory service is a client of the file service.

CS6601 – DISTRIBUTED SYSTEMS

 Page 8

Hierarchic file system • A hierarchic file system such as the one that UNIX provides

consists of a number of directories arranged in a tree structure. Each directory holds the

names of the files and other directories that are accessible from it. Any file or directory can

be referenced using a pathname – a multi-part name that represents a path through the tree.

The root has a distinguished name, and each file or directory has a name in a directory. The

UNIX file-naming scheme is not a strict hierarchy – files can have several names, and they

can be in the same or different directories. This is implemented by a link operation, which

adds a new name for a file to a specified directory.

A UNIX-like file-naming system can be implemented by the client module using the flat

file and directory services that we have defined. A tree-structured network of directories is

constructed with files at the leaves and directories at the other nodes of the tree. The root

of the tree is a directory with a ‘well-known’ UFID. Multiple names for files can be

supported using the AddName operation and the reference count field in the attribute

record.

File groups • A file group is a collection of files located on a given server. A server may

hold several file groups, and groups can be moved between servers, but a file cannot

change the group to which it belongs. A similar construct called a filesystem is used in

UNIX and in most other operating systems. (Terminology note: the single word filesystem

refers to the set of files held in a storage device or partition, whereas the words file system

refer to a software component that provides access to files.) File groups were originally

introduced to support facilities for moving collections of files stored on removable media

between computers. In a distributed file service, file groups support the allocation of files

to file servers in larger logical units and enable the service to be implemented with files

stored on several servers. In a distributed file system that supports file groups, the

representation of UFIDs includes a file group identifier component, enabling the client

module in each client computer to take responsibility for dispatching requests to the server

that holds the relevant file group.

File group identifiers must be unique throughout a distributed system. Since file groups

can be moved and distributed systems that are initially separate can be merged to form a

single system, the only way to ensure that file group identifiers will always be distinct in a

given system is to generate them with an algorithm that ensures global uniqueness. For

example, whenever a new file group is created, a unique identifier can be generated by

concatenating the 32-bit IP address of the host creating the new group with a 16-bit integer

derived from the date, producing a unique 48-bit integer:

Note that the IP address cannot be used for the purpose of locating the file group, since it

CS6601 – DISTRIBUTED SYSTEMS

 Page 9

may be moved to another server. Instead, a mapping between group identifiers and servers

should be maintained by the file service.

3. Write short notes on Napster and its legacy. Or What is meant by Napster legacy? Explain

 in detail. (May/June 2016) (Apr/May 2017)

The first application in which a demand for a globally scalable information storage and retrieval

service emerged was the downloading of digital music files. Both the need for and the feasibility of a

peer-to-peer solution were first demonstrated by the Napster filesharing system [OpenNap 2001]

which provided a means for users to share files.

Napster became very popular for music exchange soon after its launch in 1999. At its peak, several

million users were registered and thousands were swapping music files simultaneously. Napster’s

architecture included centralized indexes, but users supplied the files, which were stored and

accessed on their personal computers. Napster’s method of operation is illustrated by the sequence of

steps shown in Figure 10.2. Note that in step 5 clients are expected to add their own music files to the

pool of shared resources by transmitting a link to the Napster indexing service for each available file.

Thus the motivation for Napster and the key to its success was the making available of a large,

widely distributed set of files to users throughout the Internet, fulfilling Shirky’s dictum by providing

access to ‘shared resources at the edges of the Internet’.

Napster was shut down as a result of legal proceedings instituted against the operators of the Napster

service by the owners of the copyright in some of the material (i.e., digitally encoded music) that was

made available on it (see the box below).

Anonymity for the receivers and the providers of shared data and other resources is a concern for the

designers of peer-to-peer systems. In systems with many nodes, the routing of requests and results

can be made sufficiently tortuous to conceal their source and the contents of files can be distributed

across multiple nodes, spreading the responsibility for making them available. Mechanisms for

anonymous communication that are resistant to most forms of traffic analysis are available

[Goldschlag et al. 1999]. If files are also encrypted before they are placed on servers, the owners of

the servers can plausibly deny any knowledge of the contents. But these anonymity techniques add to

the cost of resource sharing, and recent work has shown that the anonymity available is weak against

some attacks [Wright et al. 2002].

The Freenet [Clarke et al. 2000] and FreeHaven [Dingledine et al. 2000] projects are focused on

providing Internet-wide file services that offer anonymity for the providers and users of the shared

files. Ross Anderson has proposed the Eternity Service [Anderson 1996], a storage service that

provides long-term guarantees of data availability through resistance to all sorts of accidental data

loss and denial of service attacks. He bases the need for such a service on the observation that

CS6601 – DISTRIBUTED SYSTEMS

 Page 10

whereas publication is a permanent state for printed information – it is virtually impossible to delete

material once it has been published and distributed to a few thousand libraries in diverse

organizations and jurisdictions around the world – electronic publications cannot easily achieve the

same level of resistance to censorship or suppression. Anderson covers the technical and economic

requirements to ensure the integrity of the store and also points out that anonymity is often an

essential requirement for the persistence of information, since it provides the best defence against

legal challenges, as well as illegal actions such as bribes or attacks on the originators, owners or

keepers of the data.

Lessons learned from Napster •

Napster demonstrated the feasibility of building a useful large-scale service that depends almost

wholly on data and computers owned by ordinary Internet users. To avoid swamping the computing

resources of individual users (for example, the first user to offer a chart-topping song) and their

network connections, Napster took account of network locality – the number of hops between the

client and the server – when allocating a server to a client requesting a song. This simple load

distribution mechanism enabled the service to scale to meet the needs of large numbers of users.

Limitations: Napster used a (replicated) unified index of all available music files. For the application

in question, the requirement for consistency between the replicas was not strong, so this did not

hamper performance, but for many applications it would constitute a limitation. Unless the access

path to the data objects is distributed, object discovery and addressing are likely to become a

bottleneck.

Application dependencies: Napster took advantage of the special characteristics of the application for

which it was designed in other ways:

 Music files are never updated, avoiding any need to make sure all the replicas of files remain

consistent after updates.

 No guarantees are required concerning the availability of individual files – if a music file is

temporarily unavailable, it can be downloaded later. This reduces the requirement for dependability

of individual computers and their connections to the Internet.

4. Write short notes on peer to peer middleware. (May/June 2016)

A key problem in the design of peer-to-peer applications is providing a mechanism to

enable clients to access data resources quickly and dependably wherever they are located

throughout the network. Napster maintained a unified index of available files for this

purpose, giving the network addresses of their hosts. Second-generation peer-to-peer file

storage systems such as Gnutella and Freenet employ partitioned and distributed indexes,

but the algorithms used are specific to each system.

This location problem existed in several services that predate the peer-to-peer paradigm as

well. For example, Sun NFS addresses this need with the aid of a virtual file system

abstraction layer at each client that accepts requests to access files stored on multiple

servers in terms of virtual file references. This solution relies on a substantial amount of

pre-configuration at each client and manual intervention when file distribution patterns or

server provision changes. It is clearly not scalable beyond a service managed by a single

organization. AFS has similar properties.

Peer-to-peer middleware systems are designed specifically to meet the need for the

automatic placement and subsequent location of the distributed objects managed by peer-

to-peer systems and applications.

Functional requirements •

The function of peer-to-peer middleware is to simplify the construction of services that are

implemented across many hosts in a widely distributed network. To achieve this it must

enable clients to locate and communicate with any individual resource made available to a

service, even though the resources are widely distributed amongst the hosts. Other

CS6601 – DISTRIBUTED SYSTEMS

 Page 11

important requirements include the ability to add new resources and to remove them at will

and to add hosts to the service and remove them. Like other middleware, peer-to-peer

middleware should offer a simple programming interface to application programmers that

is independent of the types of distributed resource that the application manipulates.

Non-functional requirements •

To perform effectively, peer-to-peer middleware must also address the following non-

functional requirements: Global scalability: One of the aims of peer-to-peer applications is

to exploit the hardware resources of very large numbers of hosts connected to the Internet.

Peer-to peer middleware must therefore be designed to support applications that access

millions of objects on tens of thousands or hundreds of thousands of hosts.

Load balancing: The performance of any system designed to exploit a large number of

computers depends upon the balanced distribution of workload across them. For the

systems we are considering, this will be achieved by a random placement of resources

together with the use of replicas of heavily used resources.

Optimization for local interactions between neighbouring peers: The ‘network distance’

between nodes that interact has a substantial impact on the latency of individual

interactions, such as client requests for access to resources. Network traffic loadings are

also impacted by it. The middleware should aim to place resources close to the nodes that

access them the most.

Accommodating to highly dynamic host availability: Most peer-to-peer systems are

constructed from host computers that are free to join or leave the system at any time. The

hosts and network segments used in peer-to-peer systems are not owned or managed by

any single authority; neither their reliability nor their continuous participation in the

provision of a service is guaranteed. A major challenge for peer to peer systems is to

provide a dependable service despite these facts. As hosts join the system, they must be

integrated into the system and the load must be redistributed to exploit their resources.

When they leave the system whether voluntarily or involuntarily, the system must detect

their departure and redistribute their load and resources.

5. With neat sketch explain Routing Overlays in detail. Or Explain in detail about

routing overlay employed in Ocean store storage. (May/June2016) (Nov/Dec

2016) (Apr/May 2017)

The development of middleware that meets the functional and non-functional requirements

outlined in the previous section is an active area of research, and several significant

middleware systems have already emerged. In this chapter we describe several of them in

detail.

In peer-to-peer systems a distributed algorithm known as a routing overlay takes

responsibility for locating nodes and objects. The name denotes the fact that the

middleware takes the form of a layer that is responsible for routing requests from any

client to a host that holds the object to which the request is addressed. The objects of

interest may be placed at and subsequently relocated to any node in the network without

client involvement. It is termed an overlay since it implements a routing mechanism in the

application layer that is quite separate from any other routing mechanisms deployed at the

network level such as IP routing. This approach to the management and location of

replicated objects was first analyzed and shown to be effective for networks involving

sufficiently many nodes in a groundbreaking paper by Plaxton et al. [1997].

The routing overlay ensures that any node can access any object by routing each request

through a sequence of nodes, exploiting knowledge at each of them to locate the

destination object. Peer-to-peer systems usually store multiple replicas of objects to ensure

availability. In that case, the routing overlay maintains knowledge of the location of all the

available replicas and delivers requests to the nearest ‘live’ node (i.e. one that has not

failed) that has a copy of the relevant object.

CS6601 – DISTRIBUTED SYSTEMS

 Page 12

The GUIDs used to identify nodes and objects are an example of the ‘pure’ names. These

are also known as opaque identifiers, since they reveal nothing about the locations of the

objects to which they refer.

The main task of a routing overlay is the following:

Routing of requests to objects: A client wishing to invoke an operation on an object

submits a request including the object’s GUID to the routing overlay, which routes the

request to a node at which a replica of the object resides.

But the routing overlay must also perform some other tasks:

Insertion of objects: A node wishing to make a new object available to a peer-to-peer

service computes a GUID for the object and announces it to the routing overlay, which

then ensures that the object is reachable by all other clients.

Deletion of objects: When clients request the removal of objects from the service the

routing overlay must make them unavailable.

Node addition and removal: Nodes (i.e., computers) may join and leave the service. When

a node joins the service, the routing overlay arranges for it to assume some of the

responsibilities of other nodes. When a node leaves (either voluntarily or as a result of a

system or network fault), its responsibilities are distributed amongst the other nodes.

An object’s GUID is computed from all or part of the state of the object using a function

that delivers a value that is, with very high probability, unique. Uniqueness is verified by

searching for another object with the same GUID. A hash function (such as SHA-1) is used

to generate the GUID from the object’s value. Because these randomly distributed

identifiers are used to determine the placement of objects and to retrieve them, overlay

routing systems are sometimes described as distributed hash tables (DHT). This is

reflected by the simplest form of API used to access them, as shown in Figure below. With

this API, the put() operation is used to submit a data item to be stored together with its

GUID. The DHT layer takes responsibility for choosing a location for it, storing it with

replicas to ensure availability) and providing access to it via the get() operation.

A slightly more flexible form of API is provided by a distributed object location and

routing (DOLR) layer, as shown in Figure below. With this interface objects can be stored

anywhere and the DOLR layer is responsible for maintaining a mapping between object

identifiers (GUIDs) and the addresses of the nodes at which replicas of the objects are

located. Objects may be replicated and stored with the same GUID at different hosts, and

the routing overlay takes responsibility for routing requests to the nearest available replica.

CS6601 – DISTRIBUTED SYSTEMS

 Page 13

With the DHT model, a data item with GUID X is stored at the node whose GUID is

numerically closest to X and at the r hosts whose GUIDs are next-closest to it numerically,

where r is a replication factor chosen to ensure a very high probability of availability. With

the DOLR model, locations for the replicas of data objects are decided outside the routing

layer and the DOLR layer is notified of the host address of each replica using the publish()

operation.

6. Explain in detail about file accessing models. (Nov/Dec 2017)

File Models

 Structure and modifiability are the criteria based upon which files are modeled. They are

modeled into:

 1. Unstructured and structured files 2. Mutable and immutable files.

1. Unstructured and structured files:

 In its simplest form, file is an unstructured sequence of data, whose content appears to the

file server as an uninterpreted sequence of bytes. OS is not interested in knowing about the

file’s information.

 In structured file system, a file appears as an ordered sequence of records, with each record

of same file of varying size. Record is the smallest unit of data that can be accessed.

Types of structured files:

a. File with non-indexed records: File’s record is accessed by specifying its position.

b. File with indexed records: File’s record contains key field, that can be accessed by

specifying key’s value.

 Since sharing of file by different applications is easier in unstructured category, it is mostly

preferred. Also different applications interpret the file in different ways.

 In addition to data items files have attributes that describe the file’s information. Each

attribute has a name and value. Attribute information includes owner, size, access

permissions, date of creation, last modification, last access etc.

 Attribute values can be read and updated but not all of them are updatable. A file’s

attributes are fixed by the file system, which also fixes the operations performed upon

them. File attributes are maintained by the directory service.

Mutable and Immutable files:

 In mutable file model, a file is represented as a single stored sequence, where each updates

over writes the previous content.

2. In immutable model, a file cannot be modified once it has been created except to be

deleted. Updation is carried out by providing new versions and each file is represented by a

history of immutable versions.

 Storage space can be considerably reduced by maintaining only the difference between old and

CS6601 – DISTRIBUTED SYSTEMS

 Page 14

newer versions rather than creating the entire file once again. Immutable files can be easily shared

without their consistency getting affected.

File Accessing Models

 File accessing model of DFS mainly depends on the method used to access remote files

and the unit of data access.

1. Accessing remote files:

 When the accessed file is remote, DFS uses one of the methods listed below:

a. Remote Service Model: The server, after receiving the file request from client, processes

the request and forwards the result back to the client. Request and replies between

client and server are exchanged as messages over the network.

 A good file service interface and communication protocols reduce the number of messages

that are exchanged.

b. Data Caching Model: This model reduces the network traffic by taking advantage of

locality feature found in file accesses. Client’s file request, if found in its cache, it is

serviced from there itself. Else it is forwarded to server and cached locally at the client for

further access.

 Cached data should remain consistent to overcome cache consistency problem.

 This model offers increased performance and greater system scalability by reducing

network traffic and contention for file servers.

2. Unit Of Data Transfer:
 Unit refers to the fraction of data that is transferred as result of single read or write

operation. Four commonly used data transfer models are given below:

a. File level transfer model: An entire file is transferred even though the requirement could

be a single data from a file.

 Advantages:

 i. Transmitting an entire file is better than transferring it by page by page in response to

several requests.

 ii. Better scalability.

 iii. Optimization of disk access routines at server.

 iv. Caching entire file at client makes it immune to problems at server.

 v. Simplifies task of heterogeneous work stations.

Disadvantage:
 Requires sufficient storage space at client side.

b. Block Level Transfer Model:
 File transfers between client and server is done thru file blocks, which are contiguous

portion of file with fixed length.

Advantages:

 i. Reduces storage requirement at client nodes. Most suitable for diskless workstations.

Disadvantages:

 Network traffic increases due to multiple server requests, when entire file is to be accessed.

Also network protocol overhead increases.

c. Byte Level Transfer Model:

 File transfers between client and server occurs in unit of bytes.

 Advantages:
 Provides maximum flexibility.

 Disadvantages:
 Difficult for cache management due to variable length data for different access requests.

d. Record Level Transfer Model:
 Structured file models transfer data as records in between client and server.

CS6601 – DISTRIBUTED SYSTEMS

 Page 15

7. List the different approaches to implement the Name Caches and explain them briefly.

 (Apr/May 2017) (Nov/Dec 2017)
Name resolution

In hierarchic name spaces, name resolution is an iterative or recursive process whereby a name is

repeatedly presented to naming contexts in order to look up the attributes to which it refers.
 A naming context either maps a given name onto a set of primitive attributes (such as those of a

user) directly, or maps it onto a further naming context and a derived name to be presented to that

context.

To resolve a name, it is first presented to some initial naming context; resolution iterates as long as
further contexts and derived names are output.

Name servers and navigation

DNS will not store all of its naming information on a single server computer which would be a
bottleneck and a critical point of failure. DNS specifies that each subset of its database is replicated

in at least two failure-independent servers.

The partitioning of data implies that the local name server cannot answer all enquiries without the

help of other name servers. The process of locating naming data from more than one name server
in order to resolve a name is called navigation. The client name resolution software carries out

navigation on behalf of the client. It communicates with name servers as necessary to resolve a

name.
 One navigation model that DNS supports is known as iterative navigation To resolve a

name, a client presents the name to the local name server, which attempts to resolve it. If the local

name server has the name, it returns the result immediately. If it does not, it will suggest another
server that will be able to help.

 Resolution proceeds at the new server, with further navigation as necessary until the name

is located or is discovered to be unbound.

In multicast navigation, a client multicasts the name to be resolved and the required object type to
the group of name servers. Only the server that holds the named attributes responds to the request.

 If the name proves to be unbound, the request is greeted with silence, in which a separate

server is included in the group to respond when the required name is unbound.
 A name server can coordinate the resolution of the name and pass the result back to the

user agent. In non-recursive server-controlled navigation, any name server may be chosen by the

client. This server communicates by multicasting or iterating with its peers in the style described
above, as though it were a client.

 In recursive server-controlled navigation, the client once more contacts a single server.

If this server does not store the name, the server contacts a peer storing a (larger) prefix of the

name, which in turn attempts to resolve it. This procedure continues recursively until the name is
resolved.

 If a name service spans distinct administrative domains, then clients executing in one

administrative domain may be prohibited from accessing name servers belonging to another such
domain. Moreover, even name servers may be prohibited from discovering the disposition of

naming data across name servers in another administrative domain.

Then, both client-controlled and non-recursive server-controlled navigation are inappropriate, and

recursive server-controlled navigation must be used.

CS6601 – DISTRIBUTED SYSTEMS

 Page 16

 Authorized name servers request name service data from designated name servers managed

by different administrations, which return the attributes without revealing where the different parts
of the naming database are stored.

Caching
 When a client requests a name lookup, the name resolution software consults its cache. If it

holds a recent result from a previous lookup for the name, it returns it to the client. Otherwise, it
sets about finding it from a server. That server, in turn, may return data cached from other servers.

 Caching is key to a name service’s performance and assists in maintaining the availability

of both the name service and other services in spite of name server crashes. Its enhances response
times.

 Caching can be used to eliminate high-level name servers – the root server, in particular –

from the navigation path, allowing resolution to proceed despite some server failures.
 Caching by client name resolvers is widely applied in name services and is particularly

successful because naming data are changed relatively rarely.

8 .Discuss on File Sharing Semantics. (Nov/Dec 2016)

Unix semantics – every operation on a file is instantly visible to all processes.

Session semantics – no changes are visible to other processes until the file is closed.

Immutable files – files cannot be changed (new versions must be created)

CS6601 – DISTRIBUTED SYSTEMS

 Page 17

PART – C

1. Write a case study on Sun network file system. Or Discuss the mounting issues of remote

file systems on NFS client. (Apr/May 2017)

The Figure shows the architecture of Sun NFS. It follows the abstract model defined in the preceding

section. All implementations of NFS support the NFS protocol – a set of remote procedure calls that

provide the means for clients to perform operations on a remote file store. The NFS protocol is

operating system–independent but was originally developed for use in networks of UNIX systems,

and we shall describe the UNIX implementation the NFS protocol (version 3).

The NFS server module resides in the kernel on each computer that acts as an NFS server. Requests

referring to files in a remote file system are translated by the client module to NFS protocol

operations and then passed to the NFS server module at the computer holding the relevant file

system.

The NFS client and server modules communicate using remote procedure calls. Sun’s RPC system,

described in Section 5.3.3, was developed for use in NFS. It can be configured to use either UDP or

TCP, and the NFS protocol is compatible with both. A port mapper service is included to enable

clients to bind to services in a given host by name. The RPC interface to the NFS server is open: any

process can send requests to an NFS server; if the requests are valid and they include valid user

credentials, they will be acted upon. The submission of signed user credentials can be required as an

optional security feature, as can the encryption of data for privacy and integrity.

Virtual file system • The Figure above makes it clear that NFS provides access transparency: user

programs can issue file operations for local or remote files without distinction. Other distributed file

systems may be present that support UNIX system calls, and if so, they could be integrated in the

same way.

The integration is achieved by a virtual file system (VFS) module, which has been added to the

UNIX kernel to distinguish between local and remote files and to translate between the UNIX-

independent file identifiers used by NFS and the internal file identifiers normally used in UNIX and

other file systems. In addition, VFS keeps track of the filesystems that are currently available both

locally and remotely, and it passes each request to the appropriate local system module (the UNIX

file system, the NFS client module or the service module for another file system).

CS6601 – DISTRIBUTED SYSTEMS

 Page 18

The file identifiers used in NFS are called file handles. A file handle is opaque to clients and contains

whatever information the server needs to distinguish an individual file. In UNIX implementations of

NFS, the file handle is derived from the file’s i-nodenumber by adding two extra fields as follows

(the i-node number of a UNIX file is a number that serves to identify and locate the file within the

file system in which the file is stored):

NFS adopts the UNIX mountable filesystem as the unit of file grouping defined in the preceding

section. The filesystem identifier field is a unique number that is allocated to each filesystem when it

is created (and in the UNIX implementation is stored in the superblock of the file system). The i-node

generation number is needed because in the conventional UNIX file system i-node numbers are

reused after a file is removed. In the VFS extensions to the UNIX file system, a generation number is

stored with each file and is incremented each time the i-node number is reused (for example, in a

UNIX creat system call). The client obtains the first file handle for a remote file system when it

mounts it. File handles are passed from server to client in the results of lookup, create and mkdir

operations and from client to server in the argument lists of all server operations.

Client integration • The NFS client module plays the role described for the client module in our

architectural model, supplying an interface suitable for use by conventional application programs.

But unlike our model client module, it emulates the semantics of the standard UNIX file system

primitives precisely and is integrated with the UNIX kernel. It is integrated with the kernel and not

supplied as a library for loading into client processes so that:

 User programs can access files via UNIX system calls without recompilation or reloading;

 A single client module serves all of the user-level processes, with a shared cache of recently used

blocks (described below);

 The encryption key used to authenticate user IDs passed to the server (see below) can be retained

in the kernel, preventing impersonation by user-level clients.

Access control and authentication • Unlike the conventional UNIX file system, the NFS server is

stateless and does not keep files open on behalf of its clients. So the server must check the user’s

identity against the file’s access permission attributes afresh on each request, to see whether the user

is permitted to access the file in the manner requested. The Sun RPC protocol requires clients to send

user authentication information (for example, the conventional UNIX 16-bit user ID and group ID)

with each request and this is checked against the access permission in the file attributes. These

additional parameters are not shown in our overview of the NFS protocol in Figure 12.9; they are

supplied automatically by the RPC system.

In its simplest form, there is a security loophole in this access-control mechanism. An NFS server

provides a conventional RPC interface at a well-known port on each host and any process can behave

as a client, sending requests to the server to access or update a file. The client can modify the RPC

calls to include the user ID of any user, impersonating the user without their knowledge or

permission. This security loophole has been closed by the use of an option in the RPC protocol for

the DES encryption of the user’s authentication information. More recently, Kerberos has been

integrated with Sun NFS to provide a stronger and more comprehensive solution to the problems of

user authentication and security.

NFS server interface • A simplified representation of the RPC interface provided by NFS version 3

servers (defined in RFC 1813 [Callaghan et al. 1995]) is shown in Figure below.

CS6601 – DISTRIBUTED SYSTEMS

 Page 19

The file and directory operations are integrated in a single service; the creation and insertion of file

names in directories is performed by a single create operation, which takes the text name of the new

file and the file handle for the target directory as arguments. The other NFS operations on directories

are create, remove, rename, link,

symlink, readlink, mkdir, rmdir, readdir and statfs. They resemble their UNIX counterparts with the

exception of readdir, which provides a representationindependent method for reading the contents of

directories, and statfs, which gives the status information on remote file systems.

Mount service • The mounting of subtrees of remote filesystems by clients is supported by a separate

mount service process that runs at user level on each NFS server computer. On each server, there is a

file with a well-known name (/etc/exports) containing the names of local filesystems that are

available for remote mounting. An access list is associated with each filesystem name indicating

which hosts are permitted to mount the

filesystem.

Clients use a modified version of the UNIX mount command to request mounting of a remote

filesystem, specifying the remote host’s name, the pathname of a directory in the remote filesystem

and the local name with which it is to be mounted. The remote directory may be any subtree of the

required remote filesystem, enabling clients to mount any part of the remote filesystem. The modified

mount command communicates with the mount service process on the remote host using a mount

CS6601 – DISTRIBUTED SYSTEMS

 Page 20

protocol. This is an RPC protocol and includes an operation that takes a directory pathname and

returns the file handle of the specified directory if the client has access permission for the relevant

filesystem. The location (IP address and port number) of the server and the file handle for the remote

directory are passed on to the VFS layer and the NFS client.

 Figure below illustrates a Client with two remotely mounted file stores. The nodes people and

users in filesystems at Server 1 and Server 2 are mounted over nodes students and staff in Client’s

local file store. The meaning of this is that programs running at Client can access files at Server 1 and

Server 2 by using pathnames such as /usr/students/jon and /usr/staff/ann.

Pathname translation • UNIX file systems translate multi-part file pathnames to i-node references

in a step-by-step process whenever the open, creat or stat system calls are used. In NFS, pathnames

cannot be translated at a server, because the name may cross a ‘mount point’ at the client –

directories holding different parts of a multi-part name may reside in filesystems at different servers.

So pathnames are parsed, and their translation is performed in an iterative manner by the client. Each

part of a name that refers to a remote-mounted directory is translated to a file handle using a separate

lookup request to the remote server.

Automounter • The automounter was added to the UNIX implementation of NFS in order to mount

a remote directory dynamically whenever an ‘empty’ mount point is referenced by a client. The

original implementation of the automounter ran as a userlevel UNIX process in each client computer.

Later versions (called autofs) were implemented in the kernel for Solaris and Linux.

Server caching • Caching in both the client and the server computer are indispensable features of

NFS implementations in order to achieve adequate performance.

In conventional UNIX systems, file pages, directories and file attributes that have been read from

disk are retained in a main memory buffer cache until the buffer space is required for other pages. If a

process then issues a read or a write request for a page that is already in the cache, it can be satisfied

without another disk access. Read-ahead anticipates read accesses and fetches the pages following

those that have most recently been read, and delayed-write optimizes writes: when a page has been

altered (by a write request), its new contents are written to disk only when the buffer page is required

for another page. To guard against loss of data in a system crash, the UNIX sync operation flushes

altered pages to disk every 30 seconds. These caching techniques work in a conventional UNIX

environment because all read and write requests issued by userlevel processes pass through a single

cache that is implemented in the UNIX kernel space. The cache is always kept up-to-date, and file

accesses cannot bypass the cache.

CS6601 – DISTRIBUTED SYSTEMS

 Page 21

Client caching • The NFS client module caches the results of read, write, getattr, lookup and readdir

operations in order to reduce the number of requests transmitted to servers. Client caching introduces

the potential for different versions of files or portions of files to exist in different client nodes,

because writes by a client do not result in the immediate updating of cached copies of the same file in

other clients. Instead, clients are responsible for polling the server to check the currency of the

cached data that they hold.

2. Briefly explain about the case study on Andrew file system. (Nov/Dec 2016)

AFS differs markedly from NFS in its design and implementation. The differences are primarily

attributable to the identification of scalability as the most important design goal. AFS is designed to

perform well with larger numbers of active users than other distributed file systems. The key strategy

for achieving scalability is the caching of whole files in client nodes. AFS has two unusual design

characteristics:

 Whole-file serving: The entire contents of directories and files are transmitted to client computers

by AFS servers (in AFS-3, files larger than 64 kbytes are transferred in 64-kbyte chunks).

 Whole-file caching: Once a copy of a file or a chunk has been transferred to a client computer it is

stored in a cache on the local disk. The cache contains several hundred of the files most recently used

on that computer. The cache is permanent, surviving reboots of the client computer. Local copies of

files are used to satisfy clients’ open requests in preference to remote copies whenever possible.

Implementation

AFS is implemented as two software components that exist as UNIX processes called Vice and

Venus. Figure below shows the distribution of Vice and Venus processes. Vice is the name given to

the server software that runs as a user-level UNIX process in each server computer, and Venus is a

user-level process that runs in each client computer and corresponds to the client module in our

abstract model.

The files available to user processes running on workstations are either local or shared. Local files

are handled as normal UNIX files. They are stored on a workstation’s disk and are available only to

local user processes. Shared files are stored on servers, and copies of them are cached on the local

disks of workstations. The name space seen by user processes is illustrated in Figure below. It is a

conventional UNIX directory hierarchy, with a specific subtree (called cmu) containing all of the

shared files. This splitting of the file name space into local and shared files leads to some loss of

CS6601 – DISTRIBUTED SYSTEMS

 Page 22

location transparency, but this is hardly noticeable to users other than system administrators. Local

files are used only for temporary files (/tmp) and processes that are essential for workstation startup.

Other standard UNIX files (such as those normally found in /bin, /lib and so on) are implemented as

symbolic links from local directories to files held in the shared space. Users’ directories are in the

shared space, enabling users to access their files from any workstation.

The UNIX kernel in each workstation and server is a modified version of BSD UNIX. The

modifications are designed to intercept open, close and some other file system calls when they refer

to files in the shared name space and pass them to the Venus process in the client computer

(illustrated in Figure below).

Figure below describes the actions taken by Vice, Venus and the UNIX kernel when a user process

issues each of the system calls mentioned in our outline scenario above. The callback promise

mentioned here is a mechanism for ensuring that cached copies of files are updated when another

client closes the same file after updating it.

CS6601 – DISTRIBUTED SYSTEMS

 Page 23

Cache consistency

When Vice supplies a copy of a file to a Venus process it also provides a callback promise – a token

issued by the Vice server that is the custodian of the file, guaranteeing that it will notify the Venus

process when any other client modifies the file. Callback promises are stored with the cached files on

the workstation disks and have two states: valid or cancelled. When a server performs a request to

update a file it notifies all of the Venus processes to which it has issued callback promises by sending

a callback to each – a callback is a remote procedure call from a server to a Venus process. When the

Venus process receives a callback, it sets the callback promise token for the relevant file to

cancelled.

Whenever Venus handles an open on behalf of a client, it checks the cache. If the required file is

found in the cache, then its token is checked. If its value is cancelled, then a fresh copy of the file

must be fetched from the Vice server, but if the token is valid, then the cached copy can be opened

and used without reference to Vice. Figure below shows the RPC calls provided by AFS servers for

operations on files.

CS6601 – DISTRIBUTED SYSTEMS

 Page 24

Update semantics • The goal of this cache-consistency mechanism is to achieve the best

approximation to one-copy file semantics that is practicable without serious performance

degradation. A strict implementation of one-copy semantics for UNIX file access primitives would

require that the results of each write to a file be distributed to all sites holding the file in their cache

before any further accesses can occur. This is not practicable in large-scale systems; instead, the

callback promise mechanism maintains a well-defined approximation to one-copy semantics.

For AFS-1, the update semantics can be formally stated in very simple terms. For a client C operating

on a file F whose custodian is a server S, the following guarantees of currency for the copies of F are

maintained:

 After a successful open: latest(F, S)

 After a failed open: failure(S)

 After a successful close: updated(F, S)

 After a failed close: failure(S)

3.Give a detailed description of PASTRY. (Nov/Dec 2017)

Pastry is a routing overlay. All the nodes and objects that can be accessed through Pastry are

assigned 128-bit GUIDs. For nodes, these are computed by applying a secure hash function (such

as SHA-1) to the public key with which each node is provided. For objects such as files, the GUID

is computed by applying a secure hash function to the object’s name or to some part of the object’s

stored state. The resulting GUIDs have the usual properties of secure hash values – that is, they are

randomly distributed in the range 0 to 2128–1. They provide no clues as to the value from which

they were computed, and clashes between GUIDs for different nodes or objects are extremely

unlikely. (If a clash occurs, Pastry detects it and takes remedial action.)

In a network with N participating nodes, the Pastry routing algorithm will correctly route a

message addressed to any GUID in O(log N) steps. If the GUID identifies a node that is currently

active, the message is delivered to that node; otherwise, the message is delivered to the active

node whose GUID is numerically closest to it. Active nodes take responsibility for processing

requests addressed to all objects in their numerical neighbourhood.

The GUID space is treated as circular: GUID 0’s lower neighbour is 2
128

–1. Figure below gives a

view of active nodes distributed in this circular address space. Since every leaf set includes the

GUIDs and IP addresses of the current node’s immediate neighbours, a Pastry system with correct

leaf sets of size at least 2 can route messages to any GUID trivially as follows: any node A that

receives a message M with destination address D routes the message by comparing D with its own

GUID A and with each of the GUIDs in its leaf set and forwarding M to the node amongst them

that is numerically closest to D.

CS6601 – DISTRIBUTED SYSTEMS

 Page 25

The Figure below shows the structure of the routing table for a specific node,

Figure below illustrates the actions of the routing algorithm. The routing table is structured

as follows:

GUIDs are viewed as hexadecimal values and the table classifies GUIDs based on their

hexadecimal prefixes. The table has as many rows as there are hexadecimal digits in a

GUID, so for the prototype Pastry system that we are describing, there are 128/4 = 32

rows. Any row n contains 15 entries – one for each possible value of the nth hexadecimal

digit, excluding the value in the local node’s GUID. Each entry in the table points to one of

the potentially many nodes whose GUIDs have the relevant prefix.

The routing process at any node A uses the information in its routing table R and leaf set L

to handle each request from an application and each incoming message from another node

according to the algorithm shown in Figure below.

CS6601 – DISTRIBUTED SYSTEMS

 Page 26

